There are three common types of underwater arm pull in swimming:
- the dropped elbow arm pull;
- the straight arm pull; and
- the high elbow arm pull.
Here is how James Counsilman describes each in his book, The Science of Swimming[1]:
The dropped elbow arm pull is the poorest type of pull and provides the swimmer with very little forward propulsion, since very little water is pushed backwards.
The straight arm pull is better than the dropped elbow arm pull so far as effectiveness is concerned, but at points A and B the force applied downward is too great, and at points D and E the force applied upward is too great. This tends to push the swimmer upward at points A and B and downward when the hand is at D and E.
The “best pull" here is synonymous with fast and efficient swimming. One of the prerequisites for the “best pull” as seen in the illustration above, is the high elbow catch (the arm position between the points A and B). To achieve the “best pull” the swimmer must first establish a high elbow catch, which is why the high elbow catch is considered a critical component of fast and efficient swimming. Swimmers and coaches dedicate a lot of time and effort to refining the technique involved in high elbow catch.
When we learn a new movement, our brain generates new motor pathways that carry the signals from the brain to the body parts responsible for that movement. For instance, if the swimmer consistently drops her elbow during the catch, the brain sends the information necessary to perform that particular movement (dropped elbow catch) to the appropriate body parts along established motor pathways. Let’s call these pathways the "dropped elbow catch" motor pathways.
If this swimmer wanted to develop a high elbow catch (a new movement), she would first have to develop the new “high elbow catch” motor pathways that would carry the appropriate signals from the brain to the body parts responsible for the high elbow catch. For the brain to activate new motor pathways, however, it needs to receive certain information related to the new movement. A logical question to ask at this point is: How can the swimmer perform the new movement in order to send the information related to this movement to the brain, if she doesn’t know how to perform the movement? It feels like a chicken and egg question, but the answer is to do drills and use tools that emphasize certain parts of a stroke and stimulate active thinking at critical moments. Drills allow the swimmer to perform in a consistent manner, over and over in order to refine a specific movement. Appropriate tools bring the swimmer’s attention to specific aspects of a stroke and/or build awareness of the water and the muscles involved in particular movements. VB AIR is one of such tools.
VB AIR inherit their design from our popular VoloBlades paddles. As we have written before, the design of VoloBlades shifts the point of pressure down to the lower palm, which promotes a high elbow catch and quick engagement of core muscles, resulting in a faster and more efficient swim. Furthermore, due to the unique design of VoloBlades, the fingers have direct and unobstructed contact with water, which is a crucial requirement for increasing the feel for water. VB AIR have an additional unique property: they are buoyant. To overcome this buoyancy, the swimmer has to exert extra effort when her arm enters the water and establishes the catch. When the swimmer is forced to exert extra effort in an unexpected place, it brings about awareness of that particular place and time. It forces the swimmer to pay closer attention to the details of the movement that she is performing.
Pushing down with the lower palm on the buoyant VB AIR promotes superior high elbow catch. The design and the buoyancy of VB AIR in combination with the swimmer’s awareness and active thinking during the catch phase create an environment in which the swimmer is able to make adjustments necessary for improved high elbow catch. As it happens, the information related to the high elbow catch is sent do the brain that begins to activate new “high elbow catch” motor pathways. "The more particular pathway is activated during consistent, purposeful action, the likelier it is to be stabilized."[2] VB AIR allow for this consistent, purposeful action and the creation of an automatic high elbow catch.